
Load Flaking on Continuous Monitoring of Spatial
Queries

Narendra Babu.Pamula,G.Bargavi

Prakasam Engineering College, Kandukuru
Prakasam Dist, Andhrapradesh,India

Abstract— Wireless data broadcast is a promising technique for
information dissemination that leverages the computational
capabilities of the mobile devices, in order to enhance the scalability of
the system. Under this environment, the data are continuously
broadcast by the server, interleaved with some indexing information
for query processing. Clients may then tune in the broadcast channel
and process their queries locally without contacting the server. In
location-based, mobile continual query (CQ) systems, two key
measures of quality-of-service (QoS) are: freshness and accuracy. In
continuous monitoring an air indexing framework that (i)
outperforms the existing (i.e., snapshot) techniques in terms of energy
consumption, while achieving low access latency, and (ii) constitutes
the first method supporting efficient processing of continuous spatial
queries over moving objects. So to achieve freshness, the CQ server
must perform frequent query revaluations. To attain accuracy, the
CQ server must receive and process frequent position updates from
the mobile nodes. In this paper, we formulate this problem as a load
flaking one, and develop MobiQual—a QoS-aware approach to
performing both update load flaking and query load flaking. The
design of MobiQual highlights three important features like Per-
query QoS specification, 3) Low cost adaptation: MobiQual
dynamically adapts, with a minimal overhead, to changing load
conditions and available resources. Load flaking, the MobiQual
approach leads to much higher freshness and accuracy in the query
results in all cases, compared to existing approaches that lack the
QoS-awareness properties of MobiQual, as well as the solutions that
perform query-only or update-only load flaking.
Keywords-Query processing, load flaking, Spatial databases, query
processing, location based services, wireless data broadcast, air
indexes.

1.INTRODUCTION

Mobile devices with computational, storage, and wireless
communication capabilities (such as PDAs) are becoming
increasingly popular. At the same time, the technology
behind positioning systems is constantly evolving, enabling
the integration of low cost GPS devices in any portable
unit. Consequently, new mobile computing applications are
expected to emerge, allowing users to issue location-
dependent queries in a ubiquitous manner. Consider, for
instance, a user (mobile client) in an unfamiliar city, who
would like to know the 10 closest restaurants. This is an
instance of a k nearest neighbor (kNN) query, where the
query point is the current location of the client and the set
of data objects contains the city restaurants. Alternatively,
the user may ask for all restaurants located within a certain
distance, i.e., within 200 meters. This is an instance of a
range query. continuous monitoring of multiple queries
over arbitrarily moving objects. In this setting, there is a
central server that monitors the locations of both objects
and queries. The task of the server is to report and
continuously update the query results as the clients and the
objects move. As an example, consider that the data objects

are vacant cabs and the clients are pedestrians that wish to
know their k closest free taxis until they hire one. As the
reverse case, the queries may correspond to vacant cabs,
and each free taxi driver wishes to be continuously
informed about his/her k closest pedestrians. Several
monitoring methods have been proposed, covering both
range and kNN queries. Some of these methods assume that
objects issue updates whenever they move, while others
consider that data objects have some computational
capabilities, so that they inform the server only when their
movement influences some query. In the aforementioned
methods, the processing load at the server side increases
with the number of queries. In applications involving
numerous clients, the server may be overwhelmed by their
queries or take prohibitively long time to answer them.
Continual query (CQ) systems have been proposed to
handle long running location monitoring tasks in a scalable
manner the focus of these works is primarily on efficient
indexing and query processing techniques, not on the
accuracy or freshness of the query results. Accuracy
(inaccuracy) is measured based on the amount of mobile
node position errors found in the query results at the time
of query reevaluation. This accuracy measure is strongly
tied to the frequency of position updates received from the
mobile nodes. Although one can also use a higher level
concept to measure accuracy, such as the amount of
containment errors found in the query results,1 including
both false positives (inclusion errors) and false negatives
(exclusion errors), we argue that using position update
errors for accuracy measure will provide a higher level of
precision. This is primarily because by utilizing the amount
of node position errors as the accuracy measure, one can
easily bound the inaccuracy by a threshold-based position
reporting scheme Note that certain applications have higher
tolerance to inaccuracy in position updates, such as region-
based traffic density monitoring; whereas certain others
require higher accuracy, such as path-based location
tracking. Freshness (staleness), on the other hand, refers to
the age of the query results since the last query
reevaluation. It is dependent on the frequency of query
reevaluations performed at the server. As mobile nodes
continue to move, there are further deviations in mobile
node positions after the last query reevaluation. However,
such post query reevaluation deviations are not attributed to
inaccuracy.
To obtain fresher query results, the CQ server must
reevaluate the continual queries more frequently, requiring

 Narendra Babu.Pamula et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4189-4198

4189

more computing resources. Similarly, to attain more
accurate query results, the CQ server must receive and
process position updates from the mobile nodes at a higher
rate, demanding communication as well as computing
resources. However, it is almost impossible for a mobile
CQ system to achieve 100 percent fresh and accurate
results due to continuously changing positions of mobile
nodes. A key challenge, therefore, is: How do we achieve
the highest possible quality of the query results in both
freshness and accuracy, in the presence of changing
availability of resources and changing workloads of
location updates and location queries?
In this paper, we present MobiQual—a resource-adaptive
and QoS-aware load flaking framework for mobile CQ
systems. MobiQual is capable of providing high-quality
query results by dynamically determining the appropriate
amount of update load flaking (discarding certain location
update messages) and query load flaking (skipping some
query reevaluations) to be performed according to the
application-level QoS specifications of the queries. An
obvious advantage of combining query load flaking and
update load flaking within the same framework is to
empower MobiQual with differentiated load flaking
capability, that is, configuring query reevaluation periods
and update inaccuracy thresholds for achieving high overall
QoS with respect to both freshness and accuracy. Another
salient feature of MobiQual design is its ability to perform
dynamic update load flaking and query load flaking
according to changing workload characteristics and
resource constraints, and its ability to reduce or avoid
severe performance degradation in query result quality
under such conditions. MobiQual employs query grouping
and space partitioning techniques to reduce the adaptation
time required for reconfiguring the system in response to
high system dynamics, such as the number of queries, the
number of mobile nodes, and the evolving movement
patterns. To the best of our knowledge, none of the existing
works has exploited the potential of performing load
flaking to maximize the application-level freshness and
accuracy of mobile queries. In contrast to the existing work
on scalable query processing and indexing techniques,
MobiQual provides a QoS-aware framework for
performing both update load flaking and query load
flaking, in order to provide highly accurate and fresh query
results, even under limited resources or overload
conditions.
Moreover, as a complementary solution, MobiQual can
easily take advantage of existing query processing and
indexing techniques. We have conducted detailed
experimental studies on the effectiveness of MobiQual. Our
results show that 1) a careful combination of location
update load flaking and location query load flaking can
significantly outperform the approaches that are based on
query-only or update-only load flaking and 2) MobiQual
provides higher quality guarantees compared to the
approaches that lack the supports of QoS awareness and
differentiated load flaking. A preliminary version of the
MobiQual framework was described. In the current paper,
we have substantially expanded the MobiQual framework
by providing 1) a complete description of QoS-aware
update load flaking in which includes the GRIDREDUCE

algorithm for performing space partitioning (Section 6.2);
2) several additional sets of experiments in Section 9,
evaluating a MobiQual-Light scheme that focuses on
update load flaking; and 3) a revised performance
comparison of MobilQual with various schemes.

2 RELATED WORK
Wireless Broadcasting and Air Indexes
The transmission schedule in a wireless broadcast system
consists of a series of broadcast cycles. Within each cycle
the data are organized into a number of index and data
buckets. A bucket (which has a constant size) corresponds
to the smallest logical unit of information, similar to the
page concept in conventional storage systems. A single
bucket may be carried into multiple network packets (i.e.,
the basic unit of information that is transmitted over the
air). However, they are typically assumed to be of the same
size (i.e., one bucket equals one packet).
The most common data organization method is the (1;m)
interleaving scheme as shown in Figure 2. The data objects
are divided into m distinct segments, and each data segment
in the transmission schedule is preceded by a complete
version of the index. In this way, the access latency for a
client is minimized, since it may access the index (and start
the query processing) immediately after the completion of
the current data segment. also introduces an alternative
distributed index that reduces the degree of replication in
order to further improve the performance. Specifically,
instead of the entire index being replicated prior to each
data segment, only the index that corresponds to the
subsequent segment is included (i.e., replication occurs at
the upper levels of the index tree).

 Fig 1:Interleave Schemas
The main motivation behind air indexes is to minimize the
power consumption at the mobile client. Although in a
broadcast environment the uplink transmissions are
avoided, receiving all the downlink packets from the server
is not energy efficient. For instance, the Cabletron 802.11
network card (wireless LAN) was found to consume 1400
mW in the transmit, 1000 mW in the receive, and 130 mW
in the sleep mode Therefore, it is imperative that the client
switches to the sleep mode (i.e., turns off the receiver)
whenever the transmitted packets do not contain any useful
information. Based on the data organization technique of
Figure 1, the query processing at the mobile client is
performed as follows: (i) the client tunes in the broadcast
channel when the query is issued, and goes to sleep until
the next index segment arrives, (ii) the client traverses the
index and determines when the data objects qualifying its
query will be broadcast, and (iii) the client goes to sleep
and returns to the receive mode only to retrieve the

 Narendra Babu.Pamula et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4189-4198

4190

corresponding data objects. To measure the efficiency of an
indexing method, two performance metrics have been
considered in the literature: (i) tuning time, i.e., the total
time that the client stays in the receiving mode to process
the query, and (ii) access latency, i.e., the total time elapsed
from the moment the query is issued until the moment that
all the corresponding objects are retrieved. In other words,
the tuning time is a measure of the power consumption at
the mobile client, while the access latency reflects the user-
perceived quality of service.
Previous works on mobile CQ systems have focused on
roughly five major categories with respect to scalability and
performance. They are as follows:
1. Indexing schemes to process position updates more

efficiently
2. Query processing techniques to evaluate continual

queries more efficiently
3. Motion modeling techniques to reduce the number of

position updates received from the mobile nodes, while
keeping the position accuracy high

4. Load flaking approaches that achieve scalability on the
server side by only processing specially defined
significant updates

5. Distributed mobile CQ systems that achieve scalability
by performing query-aware update filtering on the
mobile node side to receive updates that only relate to
the current set of queries installed in the system

The majority of these works, with the exception of the
works listed under category 5, are mostly orthogonal to our
work. Some of them can be incorporated into MobiQual
relatively easily. For instance, MobiQual can use a TPR-
tree [4] as its underlying index structure on the server side,
can make use of advanced motion modeling techniques [3]
on the mobile node side, and can employ incremental query
processing techniques for query reevaluation. Unlike
the set of works listed under category 5, MobiQual receives
updates from all the nodes so that ad hoc and historical
queries can also be supported. However, MobiQual prefers
to shed position updates from regions that have minimal
impact on the currently installed queries, thus achieving
best of both worlds. Those in category 4 are, to some
extent, similar to MobiQual, in terms of flaking load in
position updates. However, they use different techniques
for load flaking. More importantly, they do not consider
query load flaking.
To the best of our knowledge, none of the previous works
in the field of mobile CQ systems has addressed the
problem of QoS-aware query management. MobiQual
addresses this issue by introducing a novel load flaking
framework. Note that mobile node movement is not
discrete, but continuous. As a result, zero staleness and
inaccuracy in the query results is impossible to achieve
with finite resources. Thus, a solution is required to adjust
the balance between the update processing and query
reevaluation components in mobile CQ systems.
Moreover, this balance is dependent on the tolerance of the
individual queries to staleness and inaccuracy in the query
results. Prior works on mobile CQ systems not only have
overlooked the QoS aspect of the problem, but also either
have not addressed how frequent the position updates
should be received from the mobile nodes or have not

specified how frequent query results should be updated by
reevaluating the queries. However, as we show in this
paper, an integrated, QoS-aware approach is essential for
achieving high-quality query results.

Fig 2: mobile CQ systems

3 DESIGN OVERVIEW

3.1 Load flaking in Mobile CQ Systems
In a mobile CQ system, the CQ server receives position
updates from the mobile nodes through a set of base
stations (see Fig. 1) and periodically evaluates the installed
continual queries (such as continual range or nearest
neighbour queries) over the last known positions of the
mobile nodes.3 Since the mobile node positions change
continuously, motion modelling is often used to reduce the
number of updates sent by the mobile nodes. The server
can predict the locations of the mobile nodes through the
use of motion models, albeit with increasing errors. Mobile
nodes generally use a threshold to reduce the amount of
updates to be sent to the server and to limit the inaccuracy
of the query results at the server side below the threshold.
Smaller thresholds result in smaller errors and higher
accuracy, at the expense of a higher load on the CQ server.
This is because a larger number of position updates must be
processed by the server, for instance, to maintain an index
When the position update rates are high, the amount of
position updates is huge and the server may randomly drop
some of the updates if resources are limited. This can cause
unbounded inaccuracy in the query results. In MobiQual,
we use accuracy-conscious update load shed-ding to
regulate the load incurred on the CQ server due to position
update processing by dynamically configuring the
inaccuracy thresholds at the mobile nodes.
Another major load for the CQ server is to keep the query
results up-to-date by periodically executing the CQs over
the mobile node positions. More frequent query re-
evaluations translate into increased freshness in the query
results, also at the expense of a higher server load. Given
limited server resources, when the rate of query re-
evaluations is high, the amount of queries to be re-
evaluated is vast and the server may randomly drop some
of the re-evaluations, causing stale query results (low
freshness). In MobiQual, we utilize freshness-conscious
query load flaking to control the load incurred on the CQ
server due to query re-evaluations by configuring the query
re-evaluation periods.
In general, the total load due to evaluating queries and
processing position updates dominates the performance and
scalability of the CQ server, and thus, should be bounded
by the capacity of the CQ server. Furthermore, the time-

 Narendra Babu.Pamula et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4189-4198

4191

varying processing demands of a mobile CQ system entail
that update and query load flaking should be dynamically
balanced and adaptively performed in order to match the
current workload with the server’s capacity, while meeting
the accuracy and freshness requirements of queries.
3.2 The MobiQual Approach
The MobiQual system aims at performing dynamic load
flaking to maximize the overall quality of the query results,
based on per-query QoS specifications and subject to
processing capacity constraints. The QoS specifications are
defined based on two factors: accuracy and freshness. In
MobiQual, the QoS specifications are used to decide on not
only how to spread out the impact of load flaking among
different queries, but also how to find a balance between
query load flaking and update load flaking. The main idea
is to apply differentiated load flaking to adjust the accuracy
and freshness of queries. Namely, load flaking on position
updates and query re-evaluations is done in such a way that
the freshness and accuracy of queries are non uniformly
impacted.
From the perspective of update load flaking, we make two
observations to show that non uniform result accuracy can
increase the overall QoS. First, different geographical
regions have different numbers of mobile nodes and
queries. Second, different queries have different tolerance
to position errors in the query results. This means that
flaking more updates from a region with a higher density of
mobile nodes and a lower density of queries can bring a
higher reduction on the update load and yet have a smaller.

Fig. 3. QoS-aware update load flaking and QoS-aware

query load flaking.
impact on the overall query result accuracy. This is
especially true if the queries within the region have less
stringent QoS specifications in terms of accuracy. Thus, in
MobiQual, we employ QoS-aware update load flaking: We
use inaccuracy thresholds from motion modelling as
control knobs to adjust the amount of update load flaking to
be performed, where the same amount of increase in
inaccu-racy thresholds for different geographical regions
brings differing amounts of load reduction and QoS
degradation with respect to accuracy. We refer to the load
flaking that adjusts the inaccuracy thresholds based on the
densities of mobile nodes and queries to maximize the
average accuracy of the query results under the QoS
specifications as QoS-aware update load flaking.
Similar to update load flaking, we make two observations
regarding query load flaking to show that nonuniform

freshness in the query results can increase the overall QoS
of the mobile CQ system: 1) Different queries have
different costs in terms of the amount of load they incur. 2)
Different queries have different tolerance to staleness in the
query results. Thus, it is more effective to shed load (by
sacrificing certain amount of freshness) on a costly query
than an inexpensive one. This is especially beneficial if the
costly query happens to be less stringent on freshness,
based on its QoS specification. Bearing these observations
in mind, in MobiQual, we employ QoS-aware query load
flaking We use query reevaluation periods as control knobs
to perform query load flaking, where the same amount of
increase in query reevaluation periods for different queries
brings differing amounts of load reduction and QoS
degradation with respect to freshness. We refer to the load
flaking that uses query reevaluation periods to maximize
the average freshness of the query results under the QoS
specifications as QoS-aware query load flaking.
MobiQual dynamically maintains a throttle fraction, which
defines the amount of load that should be retained. It
performs both update load flaking and query load flaking to
control the load of the system according to this throttle
fraction, while maximizing the overall quality of the query
results. As illustrated in Fig. 2, MobiQual not only strikes a
balance between freshness and accuracy by employing both
query and update load flaking, but also improves the
overall quality of the results by utilizing per-query QoS
specifications to capture each query’s different tolerance to
staleness and inaccuracy.
3.3 Notation and Fundamentals
The set of continual queries installed in the system is
denoted by Q. For each query q 2 Q, there is an associated
QoS specification Sq. The QoS function takes a value in
(0,1)where 1 represents perfect quality in terms of
freshness and position error, and 0 represents the worst. �q
and �q are used to denote the degree of staleness and
inaccuracy in the query results, respectively. �q
corresponds to the query re-evaluation period for q,
whereas �q corresponds to the average of the inaccuracy
thresholds used in motion modelling for the mobile nodes
within the query result of q. At any given time, the result of
query q can be at most �q seconds old, and at the time of
query evaluation, the position of a mobile node in the query
result can deviate from its actual position by �q meters, on
average. The mobile CQ system supports a minimum
staleness value of �‘ and a minimum position error of �‘.
For any query q, we have Sq(T├ , €├)=1. Similarly, we
introduce a maximum staleness value, denoted by �a, and a
maximum position error, denoted by Sa. The staleness in
the query results cannot exceed the maximum threshold
value of �a at which point the results are assumed to be
useless. Also the position error is bounded by �a. In
summary The minimum and maximum staleness and
position error thresholds are system parameters.
Since a scalable mobile CQ system should be able to
handle tens of thousands of queries and hundreds of
thousands of mobile nodes, it is inefficient, even if it is
possible, to adjust and dynamically maintain the
revaluation periods for queries and inaccuracy thresholds
for mobile nodes individually. In MobiQual, given a total
number of n mobile nodes, we partition the geographical

 Narendra Babu.Pamula et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4189-4198

4192

area of interest into l regions; use the same inaccuracy
threshold αi. A query qu whose result lies completely within
region Ai . For queries whose results contain mobile nodes
from different regions, αu is given by a weighted average of
αi values of the involved regions.
A key question for query load flaking is how to divide the
queries into k query groups and how to compute the re-
evaluation period Pj for each query group Cj.
3.4 Trade-Offs in Setting k and l
In general, the larger the number of query groups (k) we
have, the higher the quality of the query results is in terms
of freshness, as it enables performing differentiated load
flaking with finer granularity. The only restriction in setting
the value of k is the computational cost (which forms a
major part of the adaptation cost) of finding an effective
setting for the re-evaluation periods. Similar trade-off is
observed in setting the number of regions (l), and thus, the
number of inaccuracy thresholds, with one exception. Since
the changes in inaccuracy thresholds have to be
communicated back to the mobile nodes through control
messages (broadcasts from base stations), there is a second
dimension to this trade-off: The larger the l value is, the
higher the control cost of the adaptation step will be. In
Section 10, we experimentally evaluate the benefit/cost
trade-off in setting k and l to show that with lightweight
adaptation, we can achieve high-quality query results.
3.5 Solution Outline
There are three functional components in the MobiQual
system: reduction, aggregation, and adaptation: . Reduction
includes the algorithm for grouping the queries into k
clusters and the algorithm for partitioning the geographical
space of interest into l regions. The query groups are
incrementally updated when queries are installed or
removed from the system. The space partitioning is
recomputed prior to the periodic adaptation.
Aggregation involves computing aggregate QoS functions
for each query group and region. The aggregated QoS
functions for each query group represent the freshness
aspect of the quality. The aggregated QoS functions for
each region represent the accuracy aspect of the quality.
We argue that the separation of these two aspects is
essential to the development of a fast algorithm for
configuring the reevaluation periods and the inaccuracy
thresholds to perform adaptation. QoS-aggregation is
repeated only when there is a change in the query grouping
or the space partitioning.
Adaptation is performed periodically to determine:the
throttle fraction which defines the amount of load that can
be retained relative to the load of providing perfect quality
the setting of reevaluation periods and the setting of
inaccuracy thresholds. The latter two are performed with
the aim of maximizing the overall QoS. The computation of
the throttle fraction is performed by monitoring the
performance of the system and adjusting z in a feedback
loop.
In the remaining sections, we first present the aggregation
of QoS functions, assuming that the query grouping and
space partitioning are performed (Section 4). We then
present the formulation of the QoS-aware query load
flaking problem and present the quality-loss-based cluster-
ing (QLBC) algorithm for clustering the queries into k

groups (Section 5). Then we formalize the QoS-aware
update load flaking problem and provide a brief description
of the QoS-aware space partitioning algorithm for dividing
the geographical space of interest into l regions (Section 6).
Finally, we present the formulation of the problem of
combining query load flaking with update load flaking, and
present the minimum quality loss per cost step (MQLS)
algorithm for performing the adaptation step (Section 7).

4 AGGREGATING THE QOS FUNCTIONS

The aim of QoS aggregation is to associate an aggregate
function for each query group Cj, and an aggregate function
for each region Ai, such that the overall QoS of the system,
denoted by �, is maximized. We define

where m is the total number of queries denotes the QoS
specification for query q and can be defined as follows:

In other words, Sq(T├ , €├)is a linear combination of the
freshness QoS function Vq (Tq) and the accuracy one

Uq(€q). The parameter called freshness
weight, is used to adjust the relative importance of the two
components, freshness and accuracy. Vq (Tq) and Uq(€q)are
nonincreasing positive functions, where Vq (T├)=1 and
Uq(€├)=1.
Since the query groups are no overlapping, we have the
following:

5.PARTITIONING THE SPACE WITH GRIDREDUCE
The goal of the GRIDREDUCE space partitioning
algorithm is to partition the geographical space of interest
into l flaking regions such that this partitioning produces
query results of higher accuracy.
Algorithm Overview
The GRIDREDUCE algorithm works in two stages and
uses a statistics grid as the base data structure to guide its
decisions. The statistics grid serves as a uniform, maximum
fine-grained partitioning of the space of interest. In the first
stage of the algorithm, which follows a bottom-up process,
we create a region hierarchy over the statistics grid and
aggregate the QoS functions for the higher level regions in
this hierarchy. This region hierarchy serves as a template
from which a nonuniform partitioning of the space can be
constructed. The second stage follows a top-down process
and creates the final set of l flaking regions, starting from
the highest region in the hierarchy (the whole space). The
main idea is to selectively pick and drill down on a region
using the hierarchy constructed in the first stage. The
region to drill down is determined based on the expected
gain in the query-result accuracy, called the accuracy gain,
which is computed using the aggregated region statistics.
5.1The Statistics Grid
The statistics grid is an α x α evenly spaced grid over the

 Narendra Babu.Pamula et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4189-4198

4193

geographical space, where α is the number of grid cells on
each side of the space. For each grid cell ci;j, the statistics
grid stores the accuracy QoS function for that grid cell. The
only data structure maintained over time by the MobiQual
space partitioner is this grid. The partitioning generated by
the GRIDREDUCE algorithm using an � � � grid is
called an (α,l)partitioning.
5.2 Stage I: Building the Region Hierarchy
In the first stage, we build a complete quad-tree over the
grid. Each tree node corresponds to a different region in the
space, where regions get larger as we move closer to the
root node which represents the whole space. Each level of
the quad-tree is a uniform, no overlapping partitioning of
the entire space. Through a post order traversal of the tree,
we aggregate the accuracy QoS functions associated with
the grid cells for each node of the tree. The first stage of the
algorithm takes O(α2) time and consumes O(α2) space.
5.3 Stage II: Drilling Down in the Hierarchy
In the second stage, we start with the root node of the tree,
i.e., the entire space. At each step, we pick a visited tree
node (initially only the root) and replace it with its four
child nodes in the quad-tree. This process continues until
we reach l visited tree nodes (corresponding to l flaking
regions), assuming l mod 3=1.The crux of this stage lies in
how we choose a region to further partition during each
step. For this purpose, we maintain a max-heap of all
visited tree nodes based on their accuracy gains, a metric
we introduce below, and at each step, we pick the node
with the highest accuracy gain.
Given a tree node, the accuracy gain is a measure of the
expected reduction in the query-result inaccuracy, achieved
by partitioning the node’s region into four subregions
corresponding to its child nodes. For a tree node t, the
accuracy gain U(t) is calculated as follows: Let E(t) be the
average result inaccuracy if we only had one flaking region,
that is, t’s region. Formally, we have

Let Ep[t] be the average result inaccuracy if we had four

flaking regions that correspond to the regions of t’s child
nodes ti; i € [1::4]. Using n[t] to denote the number of
mobile nodes in the region of tree node t, we have

Then the difference E[t] - Ep[t] gives us the accuracy gain
U[t]. The computation of E[t] and Ep [t], and thus, the
accuracy gain U[t], requires solving the problem of
inaccuracy threshold setting for a fixed l of flaking regions.
Concretely, computation of E[t] requires to solve for node t
with l ¼ 1 and computation of Ep [t], requires to solve for
the four child nodes of t with l =4. As a result, the accuracy
gain is computed in constant time for a tree node t. The
second stage of the GRIDREDUCE algorithm takes O(l
log l) time and consumes O(l) space, bringing the combined
time complexity to O(l . log l + α2) and space complexity to
O(α2+l).

6.PROBLEM FORMALIZATION
The objective of the combined load flaking problem is to
maximize the overall quality =1/m(v + u). We now
restate the processing constraint by combining the load due
to query re-evaluation and update processing.
Let zv denote the fraction of the query load retained for a
given set of re-evaluation periods {Pj} We have

Similarly, let zu denote the fraction of the update load
retained for a given set of inaccuracy thresholds {}. We
have

With these definitions, we can state the processing
onstraint as follows:

The parameter in (11) represents the cost of performing
update processing with the setting of i , i= ├ compared
to the cost of performing query re-evaluation with the
setting of j; Pj =T├ . In other words, for the ideal case, the
query re-evaluation costs 1 unit, whereas the update
processing costs (0,) units. Note that is not a
system-specified parameter and is learned adaptively as
follow: Let U be the observed cost of update processing
and V be the observed cost of query re-evaluation during
the last that the workload does not significantly change
within the time frame of the adaptation period. Recall that
the load flaking parameters are configured after each
adaptation period, thus yielding new values for zu and zv
(by way of changing (Pjs andis). Thus, the combined load
flaking problem is formalized as follows:

Note that this is a nonlinear program, since the constraints
have 1=Pj terms and are not linear. We now describe
MQLS—a fast, greedy algorithm for setting the re-
evaluation periods and inaccuracy thresholds to solve the
above-stated QoS-aware load flaking problem.
The MQLS Algorithm
The basic principle of the MQLS algorithm is to start with
the ideal case of j, Pj = T├ and I, i =├ and
incrementally reduce the load to z times that of the ideal
case by repetitively increasing the re-evaluation period or
the inaccuracy thresh-old that gives the smallest quality
loss per unit cost reduction. The algorithm is greedy in
nature, since it takes the minimum quality loss per cost step.
Concretely, we partition the domain of re-evaluatio

n

 Narendra Babu.Pamula et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4189-4198

4194

periods and inaccuracy thresholds into � segments such
that we increase the Pjs and is in increments of size
Cv=(T├ - T├)/ and cu= (├ - ├) respectively. The
MQLS algorithm maintains a min. heap that stores a quality
loss per unit cost6 (qlpc) value for each re-evaluation period
and each inaccuracy threshold. The qlpc value of a re-
evaluation period (or an inaccuracy threshold) gives the
quality loss per unit cost for increasing it by cv units . The
qlpc value is denoted by Svj for query group Cj and Sui for
flaking region Ai. We have

The numerators of the second components in the above
quations represent the changes in the quality due to the
increment, whereas the denominators represent the changes
in the cost. Note that the first components of the above
equations are used to normalize the costs in the denomi-
nators, so that Sj

vs and Si
us can be compared.

When the MQLS algorithm starts, the current load
expenditure of the system, which is the sum of the load due
to update and query load flaking appropriately weighted by
�, is above our load budget imposed by the throttle fraction
z. The algorithm iteratively pops the topmost element of the
min. heap and depending on whether we have a
reevaluation period or inaccuracy threshold makes the
increment using either cv or cu. The qlpc value of the
popped element is updated and is put back into the heap
unless no further increments are possible. The algorithm
runs until the load expenditure of the system is within the
budget or all the re-evaluation periods and inaccuracy
thresholds hit their maximum value. In the latter case, the
load cannot be shed to meet the processing constraint and
random dropping of incoming updates as well as delay in
query re-evaluations will unavoidably take place.
The total number of greedy steps the algorithm can take is
given by. (l + k) which happens when all re-evaluation
periods and inaccuracy thresholds have to be increased to
their maximum values. Each greedy step takes O(log (l +
k)) time, since the min. heap has l + k elements and the
heap operations used take logarithmic time on the heap
size. The final time complexity of the MQLS algorithm
directly follows as O (. (l + k). log (l +k))and the space
complexity as O(l +k).

Fig. 4. The road map used in the experiments, Chamblee,
Georgia, US.

The pseudocode of MQLS is given in Algorithm 1.

6.2 Setting the Throttle Fraction with THROTLOOP
We set the throttle fraction adaptively based on feedback
with regard to how well the system is performing in terms
of flaking the correct amount of load, using the
THROTLOOP algorithm. When the throttle fraction z is
larger than what it should be, the system will not be able to
re-evaluate all queries at all of their revaluation points and/
or will not be able to admit all position updates into the
system. Let �v represent the fraction of query load
imposed by the set of re-evaluation periods that was

 Narendra Babu.Pamula et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4189-4198

4195

actually handled with respect to query processing. This can
be calculated by observing the number of query re-
evaluations performed and skipped during the last
adaptation period, appropriately weighted by query costs.
Similarly, let �u represent the fraction of update load
imposed by the set of inaccuracy thresholds that was
actually handled with respect to update processing. This
can be calculated by observing the number of updates
admitted and dropped since the last adaptation period.
Once �v and �u are computed, we can capture the
performance of the system in handling the amount of load
imposed by the current throttle fraction z as follows:

The denominator of (14) is the amount of load the system
was supposed to handle (recall right-hand side and the
numerator is the actual amount of load that was handled
(left-hand side adjusted by v and u). In order to take into
account the cases where z is lower than what it should
ideally be, we also consider the utilization of the system, .
When we have an overshot z, the utilization of the system
will be 1, whereas it would be less than 1 when we have an
undershot z since the system would be idle at times not
processing any queries or updates. As a result, we adjust z
as follows for the two cases

7. EXPERIMENTAL EVALUATION
We evaluate MobiQual in two parts. First, we evaluate
MobiQual without query load flaking and with no user-
defined QoS specifications7.

Fig. 5. Example QoS functions, with different midpoint

QoS values (y0:5).
The motivation behind this mode, named MobiQual-Light,
is the fact that update load flaking aspect of MobiQual is
completely transparent to the inner workings of the query
engine. It can integrate cleanly and effortlessly with any
mobile CQ engine that accepts position updates from
mobile nodes to evaluate spatial CQs. The intelligent
update load flaking capability by itself provides substantial
improvement in overall query result accuracy and is a
significant contribution of this work, and has wide
applicability. Second, we evaluate MobiQual in its entirety,
with update and query load flaking capabilities as well as
accuracy and freshness-based QoS support. The latter study

illustrates the drastic improve-ments that could be achieved
by minimally modifying the query engine to integrate query
load flaking and QoS support.

8.MOBIQUAL-LIGHT: EXPERIMENTAL EVALUATION
In this section, we present experimental results on the
effectiveness of the MobiQual-Light load shedder in
cutting the cost of receiving and processing position
updates in mobile CQ systems, while minimally affecting
the accuracy of the query results. We compare our
MobiQual-Light load shedder with the following
alternatives:
. Random Drop: The excessive position updates are not

admitted to the input FIFO queue and are dropped.
. Uniform : A uniform inaccuracy threshold is used to

retain only throttle fraction times the original number
of location updates. The THROTLOOP algorithm is
still used, but the approach is not region-aware, and
thus, space partitioning and inaccuracy threshold
settings are not performed.

. Grid-Light: A downgraded version of the MobiQual-Light
load shedder, lacking the GRIDREDUCE algorithm
which determines the flaking regions based on (l, α)
partitioning. Instead, it uses equal-sized flaking regions
based on an l-partitioning.

8.1 Evaluation Metrics
We define two sets of evaluation metrics. The first set of
evaluation metrics is used to measure the accuracy of the
query results under load flaking and the second set of
metrics deals with the cost of performing load flaking.
8.1.1 Query-Result Accuracy
Mean Containment Error, denoted by Err

C, defines the
average containment error in query results. Containment
error for a query result is defined as the ratio of the number
of missing and extra items in the result to the correct result
set size. Let Q denote the set of queries, R(q) denote the
result set for a query q Q under load flaking, and R*(q)
denote the correct result set under Then,

Fig. 6. Containment error of MobiQual-Light versus

number of flaking regions

Mean Position Error, denoted by Err
P, defines the average

position error in query results. Position error for a query
result is defined as the average error in the positions of
mobile nodes in the query result compared to the correct
positions. Let p(o) denote the position of a mobile node o in
a query result q under load flaking and p*(o) denote the

correct position of o under

 Narendra Babu.Pamula et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4189-4198

4196

We have

Standard Deviation of Containment Error, DC

ev, and
Coefficient of Variance of Containment Error, CC

ov, are
fairness metrics that measure the variation among the query
results in terms of containment error. We have Cov

C = DC
ev /

Err
C. These two metrics can also be extended to the position

error.
8.1.2 Cost of Load Flaking
To evaluate the cost incurred by load flaking, we measure
1) the time it takes to execute the adaptation step that
involves running the THROTLOOP, GRIDREDUCE, and
MQLS algorithms and 2) the number of flaking regions that
should be known by a mobile node, on average. The former
metric measures the cost of load flaking from the
perspective of the server, whereas the latter measures it
from the perspective of the mobile node as well as the
wireless network.
8.2 Experimental Results
We present the set of experimental results in two groups.
The first group of results is on the query-result accuracy
and highlights the superiority of MobiQual-Light compared
to competing approaches for flaking position update load.
The second group of results is on the additional cost
brought by the MobiQual-Light load shedder, and shows
that the overhead is minimal.

8.2.1 Query-Result Accuracy
We study the impact of several system and workload
parameters on the query-result accuracy and the relative
advantage of MobiQual-Light over competing approaches.
Impact of the throttle fraction. The graphs in Figs. 6 and 7
plot the mean position error Err

P and mean containment
error Err

C as a function of the throttle fraction z, for the
Proportional query distribution. The left y-axis is used to
show the relative values (solid lines) with respect to the
error of MobiQual-Light and the right y-axis is used to
show the absolute errors

8.2.2 Cost of Flaking Load
The cost of load flaking consists of 1) configuring the
parameters of MobiQual-Light on the server side, which
includes setting the throttle fraction, flaking regions, and
update throttlers, 2) broadcasting the subset of flaking
regions and update throttlers that correspond to the
coverage area of each base station, and 3) installing the
new set of flaking regions and update throttlers on the
mobile node side.
Server-side cost. The graphs in Fig. 10 plot the time it takes
to execute the THROTLOOP, GRIDREDUCE, and MQLS
algorithms as a function of the number of flaking regions l,
for different numbers of cells (α2) for the statistics grid. For
the default parameters of l =250 and α= 128, the config-
uration of MobiQual-Light takes around 40 msecs. This
will enable frequent adaptation, even though for most
applica-tions that involve monitoring cars or pedestrians, it
is unlikely that the update load will fluctuate with a period
less than tens of minutes Messaging cost.

Fig. 7 Server-side cost of configuring MobiQual-Light

TABLE 2 Number of Flaking Regions per Base Station

Table 2 shows the average number of flaking regions that
should be known to a base station as a function of the base
station coverage area radius. However, in reality, base
stations have smaller coverage regions at places where the
number of users is large (urban areas) and larger coverage
regions at places where the number of users is small
(suburban areas) This nature of the base stations matches
perfectly with MobiQual’s space partitioning scheme, since
the number of partitions is usually larger for dense areas
and the small base station coverage areas help decreasing
the average number of flaking regions known to a mobile
node. Following this logic, we have used a node-density-
dependent base station placement scheme and found that,
on average, each node, and thus, each base station, should
know around 41 flaking regions. Assuming a flaking region
(which is square in shape) is represented by three floats and
an update throttler is represented by a single 4-byte float,
the size of the broadcast data sent by a base station to all
nodes in its coverage area to install the flaking regions and
update throttlers is around 41 . (3 + 1) . 4 bytes = 656 bytes,
on average. To assess the messaging cost of MobiQual,
compare this number to 1,472 bytes, which is the maximum
payload available to a UDP packet over Ethernet with a
typical MTU of 1,500 bytes. When MobiQual reconfigures
the load flaking para-meters, the new information is
installed on all mobile nodes by using an average of one
wireless broadcast packet per base station.
Mobile node side cost. Since the total number of flaking
regions known to a mobile node at any time is only around
41, MobiQual-Light does not put a major burden on mobile
nodes in terms of memory consumption or processing load.
By employing a tiny 5 X 5 grid index on the mobile node
side, the flaking region that contains the current position of
the mobile node can be found quickly. Since MobiQual
does not incur additional mobile node side cost over
MobiQual-Light, we conclude that MobiQual will work on
computationally weak mobile nodes without any problem.

9. MOBIQUAL: EXPERIMENTAL EVALUATION
In this section, we compare the performance of the
MobiQual system in its entirety, with both update and
query load flaking as well as per-query QoS specification
support, to a number of other alternatives. These are the
following:

 Narendra Babu.Pamula et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4189-4198

4197

. Query-only load flaking: QoS-aware differentiated load
flaking with respect to re-evaluation periods only (see
Section 5) and uses a fixed inaccuracy threshold of

.
. Update-only load flaking: QoS-aware differentiated load

flaking with respect to inaccuracy thresholds only (see
Section 6) and can be seen as the QoS-aware extension
of MobiQual-Light. Thus, we name it as MobiQual-
Light+.

Single -P: Combined QoS-aware query and update load
flaking, but without query grouping (QLBC algorithm from
Section 5.3) and space partitioning (extended
GRIDREDUCE algorithm from Section 6.2). It represents a
special case of the MobiQual system with k= l=1
9.1 Evaluation Metrics
We evaluate the MobiQual system using four main
evaluation metrics. These include:
1. The overall quality metric ₃, as defined by (5).
2. .The mean period delay D, which is defined as the

average difference between the ideal case period T├

and the assigned period of queries Tq=Pj for qCj
 The mean period delay is formulated as

3. The mean position error R, which is defined as the

average error in the positions of the mobile nodes
within query results, relative to the error for the ideal

case of i[1..l] i = ├ It is formulated as

4. The running time of the adaptation step, which

includes configuring a new set of re-evaluation periods
and inaccuracy thresholds using the MQLS algorithm.

CONCLUSIONS

In this paper, we have presented MobiQual, a load Flaking
system aimed at providing high-quality query results in
mobile continual query systems. MobiQual has three
unique properties. First, it uses per-query QoS
specifications that characterize the tolerance of queries to
staleness and inaccuracy in the query results, in order to
maximize the overall QoS of the system. Second, it
effectively combines query load Flaking and update load
Flaking within the same framework, through the use of
differentiated load Flaking concept. Finally, the load
Flaking mechanisms used by MobiQual are lightweight,
enabling quick adaption to changes in the workload, in
terms of the number of queries, number of mobile nodes, or
their changing movement patterns. Through a detailed
experimental study, we have shown that the MobiQual
system significantly outperforms approaches that are based
on query-only or update-only load Flaking, as well as
approaches that do combined query and update load
Flaking but lack the differentiated load Flaking elements of
the MobiQual solution, in particular, the query grouping
and space partitioning mechanisms.
In this paper, we considered range queries. However,
MobiQual can be applied to kNN queries as well. There are
various query processing approaches, where kNN queries

are first approximated by circular regions based on upper
bounds on the kth distances . Using such approximations,
kNN queries can also take advantage of MobiQual.
Supporting kNN queries may also require taking into
consideration topology of the road network, as it is often
more meaningful to define nearest neighbors in terms of the
network distance rather than the euclidean
distance.MobiQual should be able to dynamically adjust the
values of the l (number of shedding regions) and k (number
of query groups) parameters as the workload changes.

Fig: Result quality under changing z and accuracy QOS

specs
An overestimated value for these parameters means lost
opportunity in terms of minimizing the cost of adaptation,
whereas an underestimated value means lost opportunity in
terms of maximizing the overall QoS. In this paper, we
have shown that the time it takes to run the adaptation step
is relatively small compared to the adaptation period in
most practical scenarios. This means that relatively
aggressive values for l and k could be used to optimize for
QoS without worrying about the cost of adaptation. We
leave it as a future work to adapt these parameters
dynamically.

ACKNOWLEDGMENT
The satisfaction that accompanies the successful
completion of any task would be incomplete with out the
mention of people who made it possible and whose
encouragement and guidance has been a source of
inspiration throughout the paper .I feel elated to extend our
floral gratitude to Prakasam Engineering College,
Department of CSE Staff Members there encouragement all
the way of during analysis of this paper there insinuations
and critisms are the key behind the successful completion
of the paper

REFERENCES
[1] NextBus, http://www.nextbus.com/, Jan. 2004.
[2] Google RideFinder Home Page, http://labs.google.com/ ridefinder,

Feb. 2006.
[3] O. Wolfson, P. Sistla, S. Chamberlain, and Y. Yesha, “Updating and

Querying Databases That Track Mobile Units,” Springer Distributed
and Parallel Databases, vol. 7, no. 3, pp. 257-387, 1999.

[4] S. Saltenis, C.S. Jensen, S.T. Leutenegger, and M.A. Lopez, “Indexing
the Positions of Continuously Moving Objects,” Proc. ACM Int’l
Conf. Management of Data, 2000.

[5] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris. Span: An
energy-efficient coordination algorithm for topology maintenance in
adhoc wireless networks. In MOBICOM, 2001.

[6] M.-S. Chen, P. S. Yu, and K.-L. Wu. Indexed sequential data
broadcasting in wireless mobile computing. In ICDCS, 1997.

[7] B. Gedik and L. Liu. MobiEyes: Distributed processing of
continuously moving queries on moving objects in a mobile system.
In EDBT, 2004.

[8] B. Gedik, A. Singh, and L. Liu. Energy efficient exact kNN search in
wireless broadcast environments. In GIS, 2004.

 Narendra Babu.Pamula et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4189-4198

4198

